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1. Find the following limits.
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(Hint: Using the sandwich theorem)

2. Let {a,} be a sequence of positive real numbers, which is defined by
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(a) Prove that a, < 3.

(b) Prove that {a,} converges (i.e. lim a, exists) and hence find its limit.
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3. (a) Prove that - < = for all natural numbers n > 2.
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(b) Hence, show that lim — =0.
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and the sandwich theorem, prove that

4. By considering forr=1,2,3,---,n
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5. (Harder problem)

Let {z,,} and {y,} be sequences of real numbers such that ;1 =2 and y; = 8 and forn =1,2,3,---
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(b) Show that 0 < z,, <y, for all natural numbers n.

(a) Prove that x,41 — Ynt1 = for all natural numbers n.

Hence, prove that {z,} is a monotonic increasing sequence and {y, } is a monotonic decreasing
sequence.
(c) Prove that {x,} and {y,} converge and lim x, = lim y,.
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(d) Prove that z,y, is a constant and hence find lim z,,.
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